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Introduction

1 t seems as though each day there's yet another news story about a computer soft-

ware problem or security breach: a bank reporting incorrect account balances, a Mars

lander lost in space, a grocery store scanner charging too much for bananas, or a

hacker gaining access to millions of credit card numbers.

Why does this happen? Can't computer programmers figure out ways to make soft-

ware just plain work? Unfortunately, no. As software gets more complex, gains more

features, and is more interconnected, it becomes more and more difficult—actually,

mathematically impossible—to create a glitch-free program. Despite how competent

the programmers are and how much care is taken, there will always be software

problems.

This is where software testing comes in. We've all found those little Inspector 12 tags

in the pockets of our new clothes. Well, software has Inspector 12s, too. Most large

software companies are so committed to quality they have one or more testers for

each programmer. These jobs span the software spectrum from computer games to

factory automation to business applications.

This book, Software Testing, will introduce you to the basics of software testing,

teaching you not just the fundamental technical skills but also the supporting skills

necessary to become a successful software tester. You will learn how to immediately

find problems in any computer program, how to plan an effective test approach,

how to clearly report your findings, and how to tell when your software is ready for

release.

About the Second Edition
When I wrote the first edition of Software Testing, software security issues were just

beginning to make the headlines. Hackers and security problems had always been a

problem, but with the interconnectivity explosion that was about to occur, few in

the industry could predict the impact that security bugs would have on developers

and users of computer software.

In this second edition I've revisited every chapter to emphasize software security

issues and point out how the basic testing techniques covered throughout the book

can be used to prevent, find, and fix them. I've also added a chapter that specifically

addresses how to test for software security bugs.



2 Software Testing

If you're a reader of the first edition, you know that no rnatter what you do, your

software will still be released with bugs. As you'll learn in the second edition, this

axiom still holds true—even for security problems. However, by applying the lessons

taught in this book you'll go a long way towards assuring that the rnost important
bugs don't slip through and that your team will create the highest quality and most

secure software possible.

Who Should Use This Book?
This book is written for three different groups of people:

• Students or computer hobbyists interested in software testing as a full-time job,

internship, or co-op. Read this book before your interview or before your first

day on the job to really impress your new boss.

• Career changers wanting to move from their field of expertise into the software
industry. There are lots of opportunities for non-software experts to apply their
knowledge to software testing. For example, a flight instructor could test a
flight simulator game, an accountant could test tax preparation software, or a
teacher could test a new child education program.

• Programmers, software project managers, and other people who make up a
software development team who want to improve their knowledge and under-
standing of what software testing is all about.

What This Book Will Do for You
In this book you will learn something about nearly every aspect of software testing:

• How software testing fits into the software development process

Basic and advanced software testing techniques

Applying testing skills to coinmon testing tasks

Improving test efficiency with automation

Planning and documenting your test effort

Effectively reporting the problems you find

• Measuring your test effort and your product's progcess

• Knowing the difference between testing and quality assurance

Finding a job as a software tester
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Software Necessary to Use This Book
The methods presented in this book are generic and can be applied to testing any

type of computer software. But, to make the examples familiar and usable by most

people, they are based on simple programs such as Calculator, Notepad, and

WordPad included with Windows XP and Windows NT/2()0().

Even if you're using a Mac or a PC running Linux or another operating system, you

will likely have similar programs available on your computer that you can easily

adapt to the text. Be creative! Creativity is one trait of a good software tester.

NOTE

The examples used throughout this book of various applications, software bugs, and software

test tools are in no way intended as an endorsement or a disparagement of the software.

They're simply used to demonstrate the concepts of software testing.

How This Book Is Organized
This book is designed to lead you through the essential knowledge and skills neces-

sary to become a good software tester. Software testing is not about banging on the

keyboard hoping you'll eventually crash the computer. A great deal of science and

engineering is behind it, lots of discipline and planning, and there can be lots of fun,

too—as you'll soon see.

Part l: The Big Picture
The chapters in Part I lay the foundation for this book by showing you how software

products are developed and how software testing fits into the overall development

process. You'll see the importance of software testing and gain an appreciation for

the magnitude of the job.

• Chapter 1, "Software Testing Background," helps you understand exactly what

a software bug is, how serious they can be, and why they occur. You'll learn

what your ultimate goal is as a software tester and what traits will help make

you a good one.

• Chapter 2, "The Software Development Process," gives you an overview of how

a software product is created in the corporate world. You'll learn what compo-

nents typically go into software, what types of people contribute to it, and the

different process models that can be used.

• Chapter 3, "The Realities of Software Testing," brings a reality check to how

software is developed. You'll see why no matter how hard you try, software can

never be perfect, You'll also learn a few fundamental terms and concepts used

throughout the rest of this book.
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Part Il: Testing Fundamentals
The chapters in Part Il teach you the fundatnental approaches to software testing.

The work of testing software is divided into four basic areas, and you will see the

techniques used for each one:

• Chapter 4, "Examining the Specification," teaches you how to find bugs by

carefully inspecting the documentation that describes what the software is

intended to do.

• Chapter 5, "Testing the Software with Blinders On," teaches you the techniques

to use for testing software without having access to the code or even knowing

how to program. This is the most common type of testing.

Chapter 6, "Examining the Code," shows you how to perform detailed analysis

of the program's source code to find bugs. You'll learn that you don't have to

be an expert programmer to use these techniques.

• Chapter 7, "Testing the Software with X-Ray Glasses," teaches you how you can

improve your testing by leveraging information you gain by reviewing the code

or being able to see it execute while you run your tests.

Part Ill: Applying Your Testing Skills
The chapters in Part Ill take the techniques that you learned in Part Il and apply

them to some real-world scenarios that you'll encounter as a software tester:

• Chapter 8, "Configuration Testing," teaches you how to organize and perform
software testing on different hardware configurations and platforms.

• Chapter 9, "Compatibility Testing," teaches you how to test for issues with
different software applications and operating systems interacting with each
other.

• Chapter 10, "Foreign-language Testing," shows you that a whole world of soft-
ware is out there and that it's important to test for the special problems that
can arise when software is translated into other languages.

• Chapter 11, "Usability Testing," teaches you how to apply your testing skills
when checking a software application's user interface and how to assure that
your software is accessible to the disabled.

• Chapter 12, "Testing the Documentation," explains how to examine the soft-
ware's documentation such as help files, user manuals, even the marketing
material, for bugs.

• Chapter 13, "Testing for Software Security," shows you how to find bugs that
allow hackers to gain access to (supposedly) secure computer systems and data•
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• Chapter 14, "Website "IQ•sting," takes everything you've learned so far and

applies it to a present-day situation. You'll see how something as simple as

testing a website can encompass nearly all aspects of software testing.

Part IV: Supplementing Your Testing
The chapters in Part IV show you how to improve your test coverage and capability

by leveraging both technology and people to perform your testing more efficiently

and effectively:

Chapter 15, "Automated Testing and Test Tools," explains how you can use

computers and software to test other software. You'll learn several different

methods for automating your tests and using tools. You'll also learn why using

technology isn't foolproof.

• Chapter 16, "Bug Bashes and Beta Testing," shows you how to use other people

to see the software differently and to find bugs that you completely over-

looked.

Part V: Working with Test Documentation
The chapters in Part V cover how software testing is documented so that its plans,

bugs, and results can be seen and understood by everyone on the project team:

• Chapter 17, "Planning Your Test Effort," shows you what goes into creating a

test plan for your project. As a new software tester, you likely won't write a test

plan from scratch, but it's important to know what's in one and why.

• Chapter 18, "Writing and Tracking Test Cases," teaches you how to properly

document the test cases you develop so that you and other testers can use

them.

Chapter 19, "Reporting What You Find," teaches you how to tell the world

when you find a bug, how to isolate the steps necessary to make it recur, and

how to describe it so that others will understand and want to fix it.

• Chapter 20, "Measuring Your Success," describes various types of data, charts,

and graphs used to gauge both your progress and success at testing and your

software project's steps toward release.

Part VI: The Future
The chapters in Part VI explain where the future lies in software testing and set the

stage for your career:
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• Chapter 21, "Software Quality Assurance," teaches you the big difference

between software testing ancl quality assurance. You'll learn about different

software industry goals such as ISO and the Capabilities Maturity Model

and what it takes to achieve then).

• Chapter 22, "Your Career as a Software 'IQster," gives you that kick in the

behind to go out and be a software tester. You'll learn what types o! jobs are

available and where to look for them. You'll also find many pointers to more

information.

Appendix
Each chapter in this book ends with a short quiz where you can try out the testing

concepts that you learn. The answers appear in Appendix A, "Answers to Quiz

Questions. "

Conventions Used in This Book
This book uses several common conventions to help teach software testing topics.

Here's a summary of those typographical conventions:

• New terms are emphasized in italics the first time they are used.

• Commands and computer output appear in a special monospaced font.

• Words you type appear in a monospaced bold font.

In addition to typographical conventions, the following special elements are

included to set off different types of information to make them easily recognizable.

NOTE

Special notes augment the material you read in each chapter. These notes clarify concepts

and procedures.

TIP

You'll find various tips that offer shortcuts and solutions to common probiems.

REMINDER

Reminders refer to concepts discussed in previous chapters to help refresh your memory and
reinforce important concepts.


