
Ron Patton

Software Testing
Second Edition



Ron Patton

Software Testing

07

03173

SIMS
800 East 96th Street, Indianapolis, Indiana 46240



Contents at a Glance

Part I

1

2

3

Part Il

4

5

6

7

Part Ill

8

9

10

11

12

13

14

Part IV

15

16

Part V

17

18

19

20

Introduction

The Big Picture

Software Testing Background

The Software Development Process

The Realities of Software Testing

Testing Fundamentals

Examining the Specification

Testing the Softwafe with Blinders On

Examining the Code

Testing the Software with X-Ray Glasses

Appiying Your Testing Skills

Configuration Testing

Compatibility Testing

Foreign-Language Testing

Usability Testing

Testing the Documentation

Testing for Software Security

Website Testing

Supplementing Your Testing

Automated Testing and Test Tools

Bug Bashes and Beta Testing

Working with Test Documentation

Planning Your Test Effort

Writing and Tracking Test Cases

Reporting What You Find

Measuring Your Success

1

9

37

53

63

91

105

125

141

153

169

183

193

211

231

253

263

277

291

313



Part VI

21

22

A

The Future

Software Quality Assurance

Your Career as a Software Tester

Appendix

Answers to Quiz Questions

Index

329

343

355

377



Table of Contents

Introduction

About the Second Edition

Who Should Use This Book?

What This Book Will Do for You

Software Necessary to Use This Book

How This Book Is Organized

Part I: The Big Picture

Part Il: Testing Fundamentals

Part Ill: Applying Your Testing Skills

Part IV: Supplementing Your Testing

Part V: Working with Test Documentation

Part VI: The Future

Appendix

Conventions Used in This Book

Part I The Big Picture

I Software Testing Background

Infamous Software Error Case Studies

Disney's Lion King, 1994—1995

Intel Pentium Floating-Point Division Bug,1994

NASA Mars Polar Lander, 1999

Patriot Missile Defense System, 1991

The Y2K (Year 2000) Bug, circa 1974

Dangerous Viewing Ahead, 2004

What Is a Bug?

Terms for Software Failures

Software Bug: A Formal Definition

Why Do Bugs Occur?

The Cost of Bugs

What Exactly Does a Software Tester Do?

What Makes a Good Software Tester?

Summary
Quiz

1

2

2
3

3

3

4

4

5

5

5

6

6

9

9

10

10

11

12

12

13

13

13

14

16

18

19

20

21

22



Software Testing

2 The Software Development Process

Product Components

What Effort Goes Into a Software Product?

What Parts Make Up a Software Product?

Software Project Staff

Software Development Lifecycle Models

Big-Bang Model

Code-and-Fix Model

Waterfall Model

Spiral Model

Summary

Quiz

3 The Realities of Software Testing

Testing Axioms

It's Impossible to Test a Program Completely

Software Testing Is a Risk-Based Exercise

Testing Can't Show That Bugs Don't Exist

The More Bugs You Find, the More Bugs There Are

The Pesticide Paradox

Not All the Bugs You Find Will Be Fixed

When a Bug's a Bug Is Difficult to Say

Product Specifications Are Never Final

23

23

24

28

29

30

31

32

33

36

36

38

38

39

40

41

41

42

44

Software Testers Aren't the Most Popular Members of a

Project Team 45

Software Testing Is a Disciplined Technical Profession 45

Software Testing Terms and Definitions

Precision and Accuracy

Verification and Validation

Quality and Reliability

Testing and Quality Assurance (QA)

Summary

Quiz

Part Il Testing Fundamentals

4 Examining the Specification

Getting Started

Black-Box and White-Box Testing

Static and Dynamic "lesting

Static Black-Box Testing: Testing the Specification

46

47

48

49

53

53

56



Contents

Performing a High-lævel Review of the Specification 57

Pretend to Be the Customer 57

Research Existing Standards and Guidelines 58

Review and Test Similar Software 59

Low-Level Specification Test Techniques

Specification Attributes Checklist

Specification Terminology Checklist 61

Summary 61

Quiz

5 Testing the Software with Blinders On

Dynamic Black-Box Testing: Testing the Software While

Blindfolded

Test-to-Pass and Test-to-Fail.

Equivalence Partitioning 67

Data Testing

Boundary Conditions

Sub-Boundary Conditions .75

Default, Empty, Blank, Null, Zero, and None

Invalid, Wrong, Incorrect, and Garbage Data 78

State Testing 79

Testing the Software's Logic Flow

Testing States to Fail

Other Black-Box Test Techniques

Behave Like a Dumb User

Look for Bugs Where You've Already Found Them

Think like a Hacker

Follow Experience, Intuition, and Hunches

Summary

Quiz 89

6 Examining the Code 91

Static White-Box Testing: Examining the Design and Code 91

Formal Reviews .92

Peer Reviews 94

Walkthroughs 95

Inspections. 9S

Coding Standards and Guidelines 96

Examples of Programming Standards and Guidelines 96

Obtaining Standards 98



viii Software Testing

7

Part Ill

8

Generic Code Review Checklist

Data Reference Errors

Data Declaration Errors

Cotnputation Errors
Comparison Errors

Control Flow Errors

Subroutine Parameter Errors

Input/Output Errors

Other Checks

Summary

Quiz

Testing the Software with X-Ray Glasses

Dynamic White-Box "IQsting

Dynamic White-Box Testing Versus Debugging

Testing the Pieces

Unit and Integration Testing

An Example of Module Testing

Data Coverage

Data Flow

Sub-Boundaries

Formulas and Equations

Error Forcing

Code Coverage

Program Statement and Line Coverage

Branch Coverage

Condition Coverage

Summary

Applying Your Testing Skills

Configuration Testing

An Overview of Configuration 'I'esting

Isolating Configuration Bugs

Sizing Up the Job

Approaching the Task

Decide the Types of Hardware You'll Need

99

99

100

101

102

102

102

103

103

104

105

106

107

108

111

113

14

115

115

116

117

118

119

120

121

122

125

126

129

131

132

133
Decide What Hardware Brands, Models, and Device

Drivers Are Available
133



Contents ix

Decide Which Hardware Features, Modes, and Options Are

Possible 134

Pare Down the Identified Hardware Configurations to a

Manageable Set 134

Identify Your Software's Unique Features That Work with the

Hardware Configurations

Design the Test Cases to Run on Each Configuration

Execute the Tests on Each Configuration

Rerun the Tests Until the Results Satisfy Your Team

Obtaining the Hardware

Identifying Hardware Standards

Configuration Testing Other Hardware.

Summary

Quiz

9 Compatibility Testing

Compatibility Testing Overview

Platform and Application Versions

Backward and Forward Compatibility

The Impact of Testing Multiple Versions

Standards and Guidelines

High-Level Standards and Guidelines

I,ow-Level Standards and Guidelines

Data Sharing Compatibility

Summary

Quiz

10 Foreign-Language Testing

Making the Words and Pictures Make Sense

Translation Issues

"IQxt Expansion

ASCII, DBCS, and Unicode

Hot Keys and Shortcuts

Extended Characters

Computations on Characters

Reading Left to Right and Right to Left

Text in Graphics

Keep the Text out of the Code

135

136

137

137

137

139

139

140

140

141

142

143

146

147

148

148

150

153

154

1S6

1S7

158

1S8

159

159



x Software Testing

Localization Issues

Content

Data Formats

Configuration and Compatibility Issues

Foreign Platform Configurations

Data Compatibility
How Much Should You Test?

Summary

Quiz

11 Usability Testing

User Interface Testing

What Makes a Good UI?

Follows Standards and Guidelines

Intuitive

Consistent

Flexible

Comfortable

Correct

Useful

Testing for the Disabled: Accessibility Testing

Legal Requirements

Accessibility Features in Software

Summary

Quiz

12 Testing the Documentation

"IYpes of Software Documentation

The Importance of Documentation Testing
What to Look for When Reviewing Documentation

The Realities of Documentation Testing

Summary

Quiz

13 Testing for Software Security

WarGatnes—the Movie

Understanding the Motivation

Threat Modeling

Is Software Security a Feature? Is Security Vulnerability a Bug?
Understanding the Buffer Overrun

160

160

162

163

165

166

167

168

169

170

170

171

173

173

175

176

176

178

178

179

180

182

183

183

187

188

189

190

190

193

194

195

197

200

201



14

Part IV

15

Contents xi

Using Safe String Functions 203

Computer Forensics

Summary
Quiz

211Website Testing

Web Page Fundamentals 212

Black-Box Testing 213

Text 215

Hyperlinks 216

Graphics 217

Forms 217

Objects and Other Simple Miscellaneous Functionality 218

Gray-Box Testing 218

White-Box Testing

Configuration and Compatibility Testing

Usability Testing 224

Introducing Automation 226

Summary 227

Quiz 227

Supplementing Your Testing

Automated Testing and Test Tools 231

The Benefits of Automation and Tools 231

Test Tools 233

Viewers and Monitors

Drivers

Stubs 236

Stress and Load Tools 237

Interference Injectors and Noise Generators 238

Analysis Tools 239

Software Test Automation 239

Macro Recording and Playback 240

Programmed Macros 242

Fully Programmable Automated Testing Tools 243

Random Testing: Monkeys and Gorillas 245

Dumb Monkeys 246

Semi-Smart Monkeys. 248

Smart Monkeys 248



xii Software Testing

16

Part V

17

18

Realities of Using Test '1001s and Automation

Sununary

Quiz

Bug Bashes and Beta Testing

Having Other People Test Your Software

Test Sharing

Beta Testing

Outsourcing Your Testing

Summary

Quiz

Working with Test Documentation

Planning Your Test Effort

The Goal of Test Planning

Test Planning Topics

High-Iævel Expectations

People, Places, and Things

Definitions

Inter-Group Responsibilities

What Will and Won't Be "IQsted

Test Phases

Test Strategy

Resource Requirements

Tester Assignments

Test Schedule

Test Cases

Bug Reporting

Metrics and Statistics

Risks and Issues

Summary

Quiz

Writing and Tracking Test Cases

The Goals of Test Case Planning

Test Case Planning Overview

Test Design

Test Cases

Test Procedures

250

251

252

253

253

255

256

258

259

259

263

264

265

265

266

267

268

270

270

271

271

272

272

274

274

274

275

275

275

277

277

279

281

283

285



19

20

Part VI

21

22

Test Case Organization and Tracking

Summary

Quiz

Reporting What You Find

Getting Your Bugs Fixed

Isolating and Reproducing Bugs

Not All Bugs Are Created Equal

A Bug's Life Cycle

Bug-Tracking Systems

The Standard: The Test Incident Report

Manual Bug Reporting and Tracking

Automated Bug Reporting and Tracking

Summary

Quiz

Measuring Your Success

Using the Information in the Bug Tracking Database

Metrics That You'll Use in Your Daily Testing

Common Project-Level Metrics

Summary

Quiz

The Future

Software Quality Assurance

Quality Is Free

Testing and Quality Assurance in the Workplace

Software Testing

Quality Assurance

Other Names for Software Testing Groups

Test Management and Organizational Structures

Capability Maturity Model (CMM)

ISO 9000

Summary

Quiz

Your Career as a Software Tester

Your Job as a Software "IQster

Finding a Software Testing Position

Contents

287

289

291

292

296

298

303

303

310

311

313

314

315

320

325

326

329

330

331

331

333

334

335

337

339

342

342

343

344

345



Introduction

1 t seems as though each day there's yet another news story about a computer soft-

ware problem or security breach: a bank reporting incorrect account balances, a Mars

lander lost in space, a grocery store scanner charging too much for bananas, or a

hacker gaining access to millions of credit card numbers.

Why does this happen? Can't computer programmers figure out ways to make soft-

ware just plain work? Unfortunately, no. As software gets more complex, gains more

features, and is more interconnected, it becomes more and more difficult—actually,

mathematically impossible—to create a glitch-free program. Despite how competent

the programmers are and how much care is taken, there will always be software

problems.

This is where software testing comes in. We've all found those little Inspector 12 tags

in the pockets of our new clothes. Well, software has Inspector 12s, too. Most large

software companies are so committed to quality they have one or more testers for

each programmer. These jobs span the software spectrum from computer games to

factory automation to business applications.

This book, Software Testing, will introduce you to the basics of software testing,

teaching you not just the fundamental technical skills but also the supporting skills

necessary to become a successful software tester. You will learn how to immediately

find problems in any computer program, how to plan an effective test approach,

how to clearly report your findings, and how to tell when your software is ready for

release.

About the Second Edition
When I wrote the first edition of Software Testing, software security issues were just

beginning to make the headlines. Hackers and security problems had always been a

problem, but with the interconnectivity explosion that was about to occur, few in

the industry could predict the impact that security bugs would have on developers

and users of computer software.

In this second edition I've revisited every chapter to emphasize software security

issues and point out how the basic testing techniques covered throughout the book

can be used to prevent, find, and fix them. I've also added a chapter that specifically

addresses how to test for software security bugs.



2 Software Testing

If you're a reader of the first edition, you know that no rnatter what you do, your

software will still be released with bugs. As you'll learn in the second edition, this

axiom still holds true—even for security problems. However, by applying the lessons

taught in this book you'll go a long way towards assuring that the rnost important
bugs don't slip through and that your team will create the highest quality and most

secure software possible.

Who Should Use This Book?
This book is written for three different groups of people:

• Students or computer hobbyists interested in software testing as a full-time job,

internship, or co-op. Read this book before your interview or before your first

day on the job to really impress your new boss.

• Career changers wanting to move from their field of expertise into the software
industry. There are lots of opportunities for non-software experts to apply their
knowledge to software testing. For example, a flight instructor could test a
flight simulator game, an accountant could test tax preparation software, or a
teacher could test a new child education program.

• Programmers, software project managers, and other people who make up a
software development team who want to improve their knowledge and under-
standing of what software testing is all about.

What This Book Will Do for You
In this book you will learn something about nearly every aspect of software testing:

• How software testing fits into the software development process

Basic and advanced software testing techniques

Applying testing skills to coinmon testing tasks

Improving test efficiency with automation

Planning and documenting your test effort

Effectively reporting the problems you find

• Measuring your test effort and your product's progcess

• Knowing the difference between testing and quality assurance

Finding a job as a software tester



Introduction 3

Software Necessary to Use This Book
The methods presented in this book are generic and can be applied to testing any

type of computer software. But, to make the examples familiar and usable by most

people, they are based on simple programs such as Calculator, Notepad, and

WordPad included with Windows XP and Windows NT/2()0().

Even if you're using a Mac or a PC running Linux or another operating system, you

will likely have similar programs available on your computer that you can easily

adapt to the text. Be creative! Creativity is one trait of a good software tester.

NOTE

The examples used throughout this book of various applications, software bugs, and software

test tools are in no way intended as an endorsement or a disparagement of the software.

They're simply used to demonstrate the concepts of software testing.

How This Book Is Organized
This book is designed to lead you through the essential knowledge and skills neces-

sary to become a good software tester. Software testing is not about banging on the

keyboard hoping you'll eventually crash the computer. A great deal of science and

engineering is behind it, lots of discipline and planning, and there can be lots of fun,

too—as you'll soon see.

Part l: The Big Picture
The chapters in Part I lay the foundation for this book by showing you how software

products are developed and how software testing fits into the overall development

process. You'll see the importance of software testing and gain an appreciation for

the magnitude of the job.

• Chapter 1, "Software Testing Background," helps you understand exactly what

a software bug is, how serious they can be, and why they occur. You'll learn

what your ultimate goal is as a software tester and what traits will help make

you a good one.

• Chapter 2, "The Software Development Process," gives you an overview of how

a software product is created in the corporate world. You'll learn what compo-

nents typically go into software, what types of people contribute to it, and the

different process models that can be used.

• Chapter 3, "The Realities of Software Testing," brings a reality check to how

software is developed. You'll see why no matter how hard you try, software can

never be perfect, You'll also learn a few fundamental terms and concepts used

throughout the rest of this book.



4 Software Testing

Part Il: Testing Fundamentals
The chapters in Part Il teach you the fundatnental approaches to software testing.

The work of testing software is divided into four basic areas, and you will see the

techniques used for each one:

• Chapter 4, "Examining the Specification," teaches you how to find bugs by

carefully inspecting the documentation that describes what the software is

intended to do.

• Chapter 5, "Testing the Software with Blinders On," teaches you the techniques

to use for testing software without having access to the code or even knowing

how to program. This is the most common type of testing.

Chapter 6, "Examining the Code," shows you how to perform detailed analysis

of the program's source code to find bugs. You'll learn that you don't have to

be an expert programmer to use these techniques.

• Chapter 7, "Testing the Software with X-Ray Glasses," teaches you how you can

improve your testing by leveraging information you gain by reviewing the code

or being able to see it execute while you run your tests.

Part Ill: Applying Your Testing Skills
The chapters in Part Ill take the techniques that you learned in Part Il and apply

them to some real-world scenarios that you'll encounter as a software tester:

• Chapter 8, "Configuration Testing," teaches you how to organize and perform
software testing on different hardware configurations and platforms.

• Chapter 9, "Compatibility Testing," teaches you how to test for issues with
different software applications and operating systems interacting with each
other.

• Chapter 10, "Foreign-language Testing," shows you that a whole world of soft-
ware is out there and that it's important to test for the special problems that
can arise when software is translated into other languages.

• Chapter 11, "Usability Testing," teaches you how to apply your testing skills
when checking a software application's user interface and how to assure that
your software is accessible to the disabled.

• Chapter 12, "Testing the Documentation," explains how to examine the soft-
ware's documentation such as help files, user manuals, even the marketing
material, for bugs.

• Chapter 13, "Testing for Software Security," shows you how to find bugs that
allow hackers to gain access to (supposedly) secure computer systems and data•



Introduction 5

• Chapter 14, "Website "IQ•sting," takes everything you've learned so far and

applies it to a present-day situation. You'll see how something as simple as

testing a website can encompass nearly all aspects of software testing.

Part IV: Supplementing Your Testing
The chapters in Part IV show you how to improve your test coverage and capability

by leveraging both technology and people to perform your testing more efficiently

and effectively:

Chapter 15, "Automated Testing and Test Tools," explains how you can use

computers and software to test other software. You'll learn several different

methods for automating your tests and using tools. You'll also learn why using

technology isn't foolproof.

• Chapter 16, "Bug Bashes and Beta Testing," shows you how to use other people

to see the software differently and to find bugs that you completely over-

looked.

Part V: Working with Test Documentation
The chapters in Part V cover how software testing is documented so that its plans,

bugs, and results can be seen and understood by everyone on the project team:

• Chapter 17, "Planning Your Test Effort," shows you what goes into creating a

test plan for your project. As a new software tester, you likely won't write a test

plan from scratch, but it's important to know what's in one and why.

• Chapter 18, "Writing and Tracking Test Cases," teaches you how to properly

document the test cases you develop so that you and other testers can use

them.

Chapter 19, "Reporting What You Find," teaches you how to tell the world

when you find a bug, how to isolate the steps necessary to make it recur, and

how to describe it so that others will understand and want to fix it.

• Chapter 20, "Measuring Your Success," describes various types of data, charts,

and graphs used to gauge both your progress and success at testing and your

software project's steps toward release.

Part VI: The Future
The chapters in Part VI explain where the future lies in software testing and set the

stage for your career:



6 Software Testing

• Chapter 21, "Software Quality Assurance," teaches you the big difference

between software testing ancl quality assurance. You'll learn about different

software industry goals such as ISO and the Capabilities Maturity Model

and what it takes to achieve then).

• Chapter 22, "Your Career as a Software 'IQster," gives you that kick in the

behind to go out and be a software tester. You'll learn what types o! jobs are

available and where to look for them. You'll also find many pointers to more

information.

Appendix
Each chapter in this book ends with a short quiz where you can try out the testing

concepts that you learn. The answers appear in Appendix A, "Answers to Quiz

Questions. "

Conventions Used in This Book
This book uses several common conventions to help teach software testing topics.

Here's a summary of those typographical conventions:

• New terms are emphasized in italics the first time they are used.

• Commands and computer output appear in a special monospaced font.

• Words you type appear in a monospaced bold font.

In addition to typographical conventions, the following special elements are

included to set off different types of information to make them easily recognizable.

NOTE

Special notes augment the material you read in each chapter. These notes clarify concepts

and procedures.

TIP

You'll find various tips that offer shortcuts and solutions to common probiems.

REMINDER

Reminders refer to concepts discussed in previous chapters to help refresh your memory and
reinforce important concepts.


